Progress in clinical trials of stem cell therapy for cerebral palsy

Abstract

Cerebral palsy is the most common disease in children associated with lifelong disability in many countries. Clinical research has demonstrated that traditional physiotherapy and rehabilitation therapies cannot alone cure cerebral palsy. Stem cell transplantation is an emerging therapy that has been applied in clinical trials for a variety of neurological diseases because of the regenerative and unlimited proliferative capacity of stem cells. In this review, we summarize the design schemes and results of these clinical trials. Our findings reveal great differences in population characteristics, stem cell types and doses, administration methods, and evaluation methods among the included clinical trials. Furthermore, we also assess the safety and efficacy of these clinical trials. We anticipate that our findings will advance the rational development of clinical trials of stem cell therapy for cerebral palsy and contribute to the clinical application of stem cells.

Keywords: adverse events, brain, cell transplantation, central nervous system, cerebral palsy, clinical trials, plasticity, regeneration, stem cell

Introduction

Cerebral palsy (CP) is a group of permanent disorders of the development of movement and posture, often accompanied by disturbances of sensation, perception, cognition, communication and behavior, by epilepsy, and by secondary musculoskeletal problems (Rosenbaum et al., 2007). The prevalence rate is approximately 3 per 1000 births globally, and is much higher in some developing countries (Graham et al., 2016; Van Naarden Braun et al., 2016; Korzeniewski et al., 2018). The causes of CP are complex, and include perinatal stroke, low birth weight, birth complications, gestational age, multiple births, and infection (Korzeniewski et al., 2018). Recent studies show that 14% of patients may have causative single-gene mutations (MacLennan et al., 2015), and the apolipoprotein E (APOE) genotype is correlated with the risk and severity of CP (Korzeniewski et al., 2018). Because of the complex etiology of CP, the pathological changes in the brain are highly variable (Brandenburg et al., 2019). Furthermore, a small proportion of patients may have completely normal magnetic resonance imaging (MRI) findings. A European study (Bax et al., 2006) found that 42.5% of children with CP have white matter damage. In addition, basal ganglia lesions, cortical/subcortical lesions, malformations, focal infarcts, and miscellaneous lesions are also shown in MRI. The treatment of CP has continuously evolved. Traditional rehabilitation treatments (Reid et al., 2015) such as physiotherapy, occupational and speech therapy, assistive devices, pharmacological intervention, and surgery such as neurectomy and rhizotomy (Koman et al., 2004; Graham et al., 2016; Jindal et al., 2019) have little efficacy for CP.

Recent studies show that stem cell therapy might effectively cure CP owing to the multi-directional differentiation potential and migration capabilities of stem cells (Fan et al., 2015; Jantzie et al., 2018; Jiao et al., 2019). Several studies have investigated the mechanisms underlying the effectiveness of stem cells in CP animal models (Zheng et al., 2012). These studies suggest that trophic factor secretion (Bennet et al., 2012), neurogenesis (Carroll and Mays, 2011; Jantzie et al., 2018), immunomodulation (Bennet et al., 2012; Jantzie et al., 2018), angiogenesis (Kiasatdolatabadi et al., 2017) and neuroplasticity (Daadi et al., 2010) are key to their therapeutic effectiveness. An increasing number of studies of stem cell therapy have been carried out for various diseases, including stroke (Bernstock et al., 2017; Liao et al., 2019), amyotrophic lateral sclerosis (Mazzini et al., 2016), Alzheimer’s disease (Duncan and Valenzuela, 2017; Reza-Zaldivar et al., 2019), spinal cord injury (Assinck et al., 2017; Mukhamedshina et al., 2019) and Parkinson’s disease (Han et al., 2015). Accordingly, transplantation of stem cells is considered a promising and effective treatment for CP as well (Novak et al., 2016).

Children with CP show improvements in gross motor function (Wang et al., 2013; Thanh et al., 2019), fine motor function (Luan et al., 2012), cognition and other symptoms such as salivation, emotional changes and language competence (Dong et al., 2018; Huang et al., 2018) after receiving stem cell infusion. Some of these improvements could be evaluated with rating scales, while others could not. Furthermore, the design of these clinical trials differed substantially, such as in cell subtype, dose and delivery method of the stem cells, and patient background. These differences make it difficult to evaluate and compare the outcomes among the clinical trials. Thus, much more research is needed before stem cells can be used as cell preparations in clinical practice. Here, we summarize recent clinical trials of stem cell therapies for CP, with the aim of allowing researchers to recognize the progress and shortcomings of current clinical trials, and so that future clinical trials of stem cell therapies for CP can be more effectively carried out.

Clinical Trial Data Retrieval of Stem Cell Therapy for Cerebral Palsy

An electronic search of the PubMed and ClinicalTrials databases for studies and clinical trials of cerebral palsy from 1971 to 2020 was performed using the following criteria: ((“stem cells”[MeSH Terms]) OR (“umbilical cord blood”[MeSH Terms])) AND (“cerebral palsy”[MeSH Terms]). The results were further screened by title, abstract or project information. As of April 28, 2020, there were only 39 clinical trials of stem cell therapy for CP registered on clinicaltrials.gov (Additional Tables Tables11 and and22), of which 18 have been completed. At the same time, some clinical trials not registered on clinicaltrials.gov were also completed and provided some referential results. We performed a literature search with the keywords “cerebral palsy”, “umbilical cord blood” and “stem cell” in PubMed, and the article type was limited to “clinical trials”. A total of 20 articles were retrieved (Additional Table 3). The retrieved trials differed in study design, the age and type of the included population, subtype and dose of stem cells, administration method and course of treatment. The trials also varied in assessment tools. Most of these clinical trials are single-arm studies with a small sample size, and are difficult to comparatively evaluate because of the lack of parallel controls. Large-sample randomized controlled trials are needed to obtain more clinically robust data.

Additional Table 1

Completed and recruiting clinical trials of stem cells therapy for CP

Project identifier Sample size Age (yr) Intervention model Status Phase Type of stem cell Infusion route Start/complete date Study location
NCT01404663 12 4-12 Single group assignme nt Completed Phase 1 Bone marrow derived CD133+ stem cell Intrathecal October, 2011 to May, 2012 Iran
NCT01763255 8 4-12 Parallel assignment Completed Phase 1 and 2 Bone marrow derived CD133 cell Intrathecal April, 2012 to April, 2014 Iran
NCT03123562 25 1-15 Single group assignme nt Completed Phase 2 Autologous bone marrow mononuclear cell Intrathecal April, 2014 to October, 2016 Vietnam
NCT02574923 30 2-15 Single group assignme nt Completed Phase 2 Autologous bone marrow mononuclear cell Intrathecal November, 2015 to April, 2018 Vietnam
NCT02569775 40 1-15 Single group assignme nt Completed Phase 2 Autologous bone marrow mononuclear cell Intrathecal April, 2014 to August, 2015 Vietnam
NCT01019733 18 1-8 Single group assignme nt Completed Not provided Autologous bone marrow stem cell Intrathecal July, 2009 to January, 2011 Mexico
NCT02983708 57 2-10 Crossover assignment Completed Phase 1 and 2 Autologous peripheral blood stem cell Not provided August, 2011 to September, 2014 Korea
NCT01193660 105 10mon-10 Parallel assignment Completed Not provided Total nucleated cells from allogenic umbilical cord blood Intravenous May, 2010 to April, 2011 Korea
NCT01639404 17 6 mon-20 Single group assignme nt Completed Not provided Total nucleated cells from allogenic umbilical cord blood Intravenous/intraarteria l July, 2012 to March, 2013 Korea
NCT02025972 10 Less than 15 Single group assignme nt Completed Not provided Total nucleated cells from allogenic umbilical cord blood Not provided December,2013 to November, 2015 Korea
NCT01991145 92 10mon-6 Parallel assignment Completed Not provided Total nucleated cells from allogenic umbilical cord blood Not provided November,2013 to June, 2017 Korea
NCT02236065 10 19-75 Single group assignme nt Completed Not provided Total nucleated cells from allogenic umbilical cord blood Not provided August, 2014 to July, 2016 Korea
NCT01528436 37 6 mon-20 Parallel assignment Completed Phase 2 Total nucleated cells from allogenic umbilical cord blood umbilical cord blood Intravenous/intraarteria l February,2012 to July, 2012 Korea
NCT03979898 1 3-12 Single group assignme nt Completed Early phase 1 Autologous adipose tissue derived mesenchym al stem cell Not provided June, 2017 to May, 2019 Korea
NCT01988584 20 2-10 Crossover assignment Completed Phase 2 Umbilical cord blood stem cells/bone marrow stem cell Not provided November, 2013 to February, 2018 USA
NCT02599207 15 1-6 Parallel assignment Completed Phase 1 Total nucleated cells from allogenic umbilical cord blood Not provided November, 2015 to July, 2018 USA
NCT01147653 63 1-6 Crossover assignment Completed Phase 2 Total nucleated cells from allogenic umbilical cord blood Not provided June, 2010 to March, 2016 USA
NCT01929434 300 1-14 Parallel assignment Completed Phase 3 Umbilical cord derived mesenchymal stem cell Intrathecal October, 2013 to December, 2016 China
NCT01072370 40 1-12 Crossover assignment Recruiting Phase 1 and 2 Autologous cord blood stem cell Intravenous January, 2010 to July, 2019 USA
NCT03005249 20 1-12 Parallel assignment Recruiting Not provided Neural stem cell Not provided December, 2016 to December, 2019 China
NCT03791372 25 6 mon-10 Parallel assignment Recruiting Phase 1 Total nucleated cells from allogenic umbilical cord blood Intravenous October, 2017 to April, 2021 China
NCT03826498 40 1-10 Parallel assignment Recruiting Phase 2 Allogenic umbilical cord blood mononuclear cell Not provided January, 2018 to January, 2021 Russian
NCT04098029 90 1-12 Parallel assignment Recruiting Phase 2 Umbilical cord blood hematopoietic cell Not provided Sepember, 2019 to May, 2021 Russian

CP: Cerebral palsy.

Additional Table 2

Other clinical trials of stem cells therapy for CP

Project identifier Sample size Age (y r) Intervention model Status Phase Type of stem cell Infusion route Start/complete date Study location
NCT03078621 50 2-12 Single group assignment Active, not recruiting Phase 1 and 2 Autologous bone marrow-derived stem cells mesenchy mal stem cell Intravenous/intrathecal Sepember, 2016 to January, 2021 Arabia
NCT03795974 108 4-14 Parallel assignment Active, not recruiting Phase 2 Hematopoietic stem cells/mesenchymal stem cell Intrathecal July, 2017 to December, 2019 Iran
NCT03414697 44 2-18 Parallel assignment Active, not recruiting Not provided Umbilical cord-derived mesenchymal stem cell Intravenous/intrathecal/in tranasal April, 2018 to December, 2020 China
NCT03087110 12 1-16 Single Group assignment Active, not recruiting Phase 1 Umbilical cord blood cell Intravenous March, 2016 to February, 2020 Australia
NCT03130816 90 10 mon -20 Single Group assignment Active, not recruiting Phase 1 and 2 Allogeneic umbilical cord blood Intravenous July, 2015 to July, 2019 Korea
NCT03473301 90 2-5 Parallel assignment recruiting Active, not Phase 1 and 2 Allogeneic umbilical cord blood/umbilical cord tissue-derived mesenchymal stromal cell Intravenous April, 2018 to May, 2021 USA
NCT03327467 Not provided Less than 26 Not provided Active, not recruiting Not provided Total nucleated cells from umbilical cord blood Intravenous October, 2017 to December,2019 USA
NCT04243408 72 2 mon-18 Parallel assignment Active, not recruiting Phase 2 Total nucleated cells from allogenic umbilical cord blood Not provided January, 2020 to December, 2024 Israel
NCT01978821 Not provided 17-22 Single group assignment Withdrawn Phase 1 Autologous bone marrow mononuclear cell Not provided August,2010 to August, 2013 India
NCT01486732 Not provided 6 mon-20 Parallel assignment Withdrawn Phase 2 Total nucleated cells from allogenic umbilical cord blood Intravenous/intraarterial March, 2013 to July, 2014 Korea
NCT02241395 Notprovided 6 mon-35 Single group assignment Withdrawn Phase 1 Autologous bone marrow mononuclear cell Intrathecal August,2013 to December, 2018 India
NCT03203941 Not provided All ages Not provided No longer available Not provided Autologous cord blood stem cell Not provided June, 2017 to May, 2020 USA
NCT04029896 Not provided >3 Not provided No longer available Not provided Autologous adipose-derived mesenchymal stem cell Intravenous July, 2019 to January, 2020 USA
NCT01834664 100 15-70 Single group assignment Unknown Phase 1 and 2 Autologous stem cell Intrathecal March,2013 to June, 2016 India
NCT02231242 60 7-9 Crossover assignment Unknown Phase 2 Bone marrow total nucleated cell Intrathecal Sepember, 2013 to June, 2016 Mexico
NCT01832454 100 3-15 Single group assignment Unknown Phase 2 and 3 Bone marrow derived mononuclear cells Intrathecal March, 2011 to December, 2015 India

Other clinical trials indicate that the clinical trials of stem cells therapy for cerebral palsy in ClinicalTrials.gov were not included in Additional Table 1. CP: Cerebral palsy.

Additional Table 3

Published clinical trials of stem cell therapy for CP

Study Sample size/number of group Age (yr) Type of CP Type of stem cells Infusion route and dose Course Adverse events Assessment tool Improvement
Nguyen et al. (2ol7) 4o/l 2-l5 Spastic Autologous BMMNCs and CD3 4+ cells 1st time, IT: 27.2 x 106 and 2.6 x 106/kg, respectively; 2nd time,
IT: 17.1 x 106and 1.7 x 1 06/kg, respectively
2 times with an interval of 3 mon Mild fever (30%),intermittent vomiting (22.5%) GMFM and MAS Muscle spasticity, gross motor function
Sharma et al. (2ol5) 4o/l l7mon-22 All types Autologous BMMNCs IT: 10.23 x 106 Once Spinal headache (15%), nausea (7.5%), vomiting (30%), pain at the site of injection (30%) and diarrhea (2.5%), seizure (5%) PET-CT, GMFCS Sitting/standing/walking balance, distal hand movements, neck holding, oromotor skills, cognition, leg movements, speech, ambulation, muscle tone ofthe upper limb/lower limb/trunk, overhead activities, dystonia
Nguyen et al. (2ol8) 3o/l 2-l5 Bilateral paresis, hemiplegia Autologous BMMNCs IT: a volume of 8 mL/kg to 200 mL maximum 2 times with an interval of 3 mon No GMFM, MAS, CP QOL-Child Gross motor function, muscle spasticity, social well-being and acceptance; feelings about functioning; participation and physical health; emotional well-being; pain and impact of disability; family health
Zali et al.(2ol5) l2/l 4-l2 Ataxic,athetoid, spastic CD133+enriched bone marrow progenitor cells IT: 4.5-17.6 x 106 Once Headache (41.7%),nausea and vomiting (41.7%), back pain (91.7%), seizure (8.3%) GMFM, GMFCS,
United Kingdom FIM+ FAM, BBS, MAS, MRI, EEG
Motor function, spasticity and cognitive
Mancías-Guerra et al.(2ol4) 18/l l mon -8 Quadriplegic,triplegic,hypotonic paralysis, paraplegic Autologous TNCs and CD34+cells IT: 13.12 x 108range (4.83-53.87 x 108 )TNCs and 10.02 x 106 (range, 1.02-29.9 x 106) CD34+ cells ; IV: 6.01 x 108 (range, 1.36-17.85 x 108) TNCs and 3.39 x 106 CD34+ cells Once Fever (5.6%),headache (11.1%),vomiting (11.1%), neck stiffness (5.6%), lingual edema (5.6%), laryngeal stridor (5.6%) BDI, MRI Cognitive, adaptive,personal-social, motor and communication
Zhang et al. (2015) 1/1 6/12 Not available Allogenic hUC B-MSCs IV: 5 x 107 4 times with an interval of a week, and repeated 4 times with an interval of a half year No Ashworth spasm assessment, GMFM,MRI, EEG, CDCC,comprehensive function Gross motor function, language,self-dependence, cognitive ability, and social, adaptation
Okur et al. (2018) 1/1 6 Dystonic,spastic Allogenic hUCB-MSCs IT + IV: 15 x 106 4 times with an interval of 15 d Mild back pain FIM, GMFCS,MACS, CFSS,Tardieu Scale, TCMS Gross motor function,self-dependence, trunk control and sitting balance, communication, hand skill
He et al.(2012) 24/1 1 mon-7 Quadriplegic,diplegia,dyskinetic,mixed Neural stem cells SS: 3.8 x 106– 7.3 x 107 Once Experienced fever (29.2%), vomited (4.2%), sphenotresia (29.2%) EEG, MRI Muscular tension in the limbs,the head-controlling action,visual acuity, the communicative competence
Chen et al. (2013) 60/2 1-35 Not available Neural stem cell-like cells IT: 1-2 x 107 2 times with an interval of 3 weeks Crying GMFM, Gesell questionnaire Gross motor function
Rah et al.(2017) 57/2 2-10 Diplegia,hemiplegia,,triplegic,ataxic,athetoid PBMCs Ml ‡: 4.63 ±2.88 x 10s TNCs and 1.92 ± 1.99 x 106 CD34+ cells; M7 ‡: 6.20 ± 1.94 x 10s TNCs and 1.75 ±1.07 x 106CD34+cells Once Fever (3.5%),Irritability (1.8%),transient hemoglobinuria (5.3%), abdominal pain (1.8%) GMFCS, GMFM,PEDI, QUEST,DDST-II, MRI,PET-CT Gross motor function, fine motor function, detailed developmental
Wang et al. (2013) 52/2 6 mon-15 Athetoid,spastic,athetoid/spastic Autologous BM-MSCs IT + SS: 2 x 107 Protocol I †:intrathecal infusion twice and stereot actic surgery once;Protocol 2†:intrathecal infusion 4 times. All the interval was 5 d Low fever (<37.5°C) and wound aches GMFM, GMFCS Gross motor function, the muscular tension, lumbar muscular power and salivation decrease
Huang et al. (2018) 54/2 3-12 Not available hUCB-MSCs IV: 5 x 107 4 times with an interval of 1 wk, and repeated once 3 m on later Upper respiratory tract infection diarrhea, anorexia,constipation CFA Gross motor ability and comprehensive function including cognizance, language competence, self-care, motor function, and social adaptability
Luan et al. (2012) 94/2 2-17 mon Quadriplegic,diplegia,dyskinetic,mixed NPCs SS: 8-10 x 106 Once Low-grade fever,tiny foci (6.4%) hemorrhage (1.1%), had difficulty in falling asleep within 1-3 d GMFM, PDMS-FM Gross motor function, fine motor function, Psychomotor functions
Chen et al. (2010) 14/2 1-12 Not available OECs SS: 2 x 106 Once No GMFM, CQS Neurological function and overall health status
Liu et al. (2017) 105/3 6 mon-12.5 Spastic BMMNCs and BM-MSCs IT: 1 x 106/kg 4 times with an int erval of 3-4 d Low intracranial pressure reactions: fever GMFM, FMFM Gross motor function, fine motor function
Thanh et al. (2019) 25/1 2-15 Spastic BMMNCs + CD34+ cells 1st time, IT: 17.4 ±11.9 x 106 and 1.5 ± 1.4 x 106; 2nd time, IT: 15.0 ± 12.8 x 106and 1.1 ± 1.1 x 106 Twice with an interval of 6 mon Vomiting (32%), local pain (16%), mild fever without any identified infection (4%) GMFM, GMFCS, MRI, EEG Gross motor function and a significant decrease in muscle tone values
Dong et al. (2018) 1/1 4 Not available UC-MSCs 1st time: 7.0 x 106/IT + 5.6 x 106/IV; 2nd time: 1.625 x 107/IT + 3.6 x 106/IV; 3rd time: 2.05 x 107/IT 3 times Not provided EEG, MRI EEG and limb strength, motor function, and language expression. The improvement in intelligence quotient was less obvious.
Min et al. (2013) 105/3 10mon-10 Spastic UCB-TNC IV: at least 3 x 107/kg Once Serious: Pneumonia(2. 9%), Influenza(2.9%), Death (2.9%); other: upper respiratory tract infection (51.4%), fever (34.3%), loose stool and diarrhea, pneumonia, nausea and vomiting (17.1%), dyspepsia, anorexia, constipation (14.3%), irritability, bronchitis (11.4%), apnea (8.6%), febrile convulsion, urticaria, hirsuitism (5.7%), seizure, alopecia, acute otitis media, anemia (2.9%) (only potentiated UCB group) GMPM, GMFM, BSID-II, WeeFIM, PEDI, MRI, 18F-FDG-PET/CT Ameliorated motor, cognitive impairment, self-care
Sun et al. (2017) 63/2 1-6 Hypotonic paralysis, spastic UCB-TNC IV: 1-5 x 107/kg Once Hives+/- low-grade fever (1.6%) GMFM, PDMS-2 GMQS, GMFCS, MRI Gross motor skills connectivity
Gu et al. (2020) 40/2 2-12 Not available UC-MSC IV: 4.5-5.5 x 107 4 times with an int erval of 7 d Upper respiratory infection (61.54%), diarrhea (38.46%), fever (28.21%), vomiting (20.51%), constipation (10.26%) GMFM, activities of daily living CFA, 18F-FDG-PET/CT,, MRI Gross motor and cognitive function

† Protocol 1: child’s age were ≥ 5 years old or head circumference ≥50 cm; Protocol 2: child’s age were < 5 years old or head circumference < 50 cm. ‡ M1: PBMCs first and placebo 6 months later, M7: placebo first and PBMCs 6 months later. BMMNCs: bone marrow mononuclear stem cell; BM-MSC: bone marrow-derived mesenchymal stromal cell; CP: cerebral palsy; TNC: total nucleated cell; PBMC: peripheral blood mononuclear cell; hUCB-MSC: human umbilical cord blood mesenchymal stem cell; NPC: neural progenitor cell; OEC: olfactory ensheathing cell; UC-MSC: umbilical cord mesenchymal stem cell; UCB: umbilical cord blood; IT: intrathecal; IV: intravenous; SS: stereotactic surgery; GMFM: Gross Motor Function Measure; MAS: Modified Ashworth Score; GMFCs: Gross Motor Function Classification System; CP QOL-Child: Cerebral Palsy Quality of Life Questionnaire for children; FIM: Functional Independence Measure; FAM: Functional Assessment Measure; BBS: Berg Balance Scale; BDI: Battelle Developmental Inventory; GMPM: gross motor performance measure; CDCC: CDCC Infant Mental Development Scale; MACS: manual ability classification system; CFSS: Communication Function Classification System; TCMS: Trunk Control Measurement Scale test; PEDI: pediatric evaluation of disability inventory; QUEST: quality of upper extremity skill test; DDST-II: Denver development screening test II; CFA: comprehensive function assessment; PDMS-FM: Peabody Developmental Motor Scale-Fine Motor test; CQS: Caregiver Questionnaire Scale; FMFM: Fine Motor Function Measure; BSID-II: Bayley scales of infant development-II Mental and Motor scales; WeeFIM: functional independence measure for children; PDMS-2 GMQS: Peabody Developmental Motor Scales-2 Gross Motor Quotient scores; PET-CT: positron emission tomography-computed tomography; MRI: magnetic resonance imaging; 18F-FDG-PET/CT: 18F-fluorodeoxyglucose positron emission tomography; EEG: electroencephalogram.

Types of Stem Cells Transplanted for the Treatment of Cerebral Palsy

Despite the abundance of stem cell sources, the stem cells used in these clinical trials were mainly derived from the following five tissues: bone marrow (Sharma et al., 2015; Nguyen et al., 2017, 2018), human umbilical cord blood (hUCB)/umbilical cord (UC) (Huang et al., 2018; Okur et al., 2018), fetal brain (Chen et al., 2010; Luan et al., 2012), adipose and peripheral blood (Ruff et al., 2013; Rah et al., 2017) (Figure 1). Stem cells produced by these tissues include mesenchymal stromal cells (MSCs) (Wang et al., 2013), total nucleated cells (Mancías-Guerra et al., 2014), neural stem cell-like cells (Chen et al., 2013), CD133-positive enriched bone marrow progenitor cells (Zali et al., 2015) and mononuclear cells (Sharma et al., 2015; Nguyen et al., 2017; Nguyen et al., 2018). In some clinical trials, patients did not exclusively receive stem cells, but cord blood containing stem cell components, and these treatments have also shown therapeutic effectiveness (Min et al., 2013; Sun et al., 2017). Among these, hUCB/UC is the most common source of stem cells, while bone marrow is the second most common. Both of these sources are comparatively abundant, the collection methods are simple, and ethical concerns are fewer. In some studies, the sources are of autologous origin, while in others, they are of allogeneic origin. Because harvesting the tissues can cause great physical and psychological trauma to children, autologous bone marrow stem cells are not a good choice for children with CP. In fact, stem cells of allogeneic origin all exhibit low immunogenicity, which is effective at avoiding immune rejection (Forraz and McGuckin, 2011). Stem cells from different sources have different efficacies, but even stem cells from the same source vary in efficacy during treatment. Liu et al. (2017) compared the efficacy of bone marrow mononuclear stem cells (BMMNCs) and bone marrow MSCs in the treatment of pediatric CP, and found that bone marrow MSCs were better than BMMNCs in the treatment of CP. While neural stem cells are considered ideal cells for the treatment of nerve injury, few studies have applied these cells in CP treatment (Trounson and McDonald, 2015). The fetal brain is considered the optimal source of neural stem cells, but their use is controversial because of ethical issues, and have only been allowed to be used in some clinical trials in China (Chen et al., 2010; Luan et al., 2012). Peripheral blood and adipose are the least common stem cell sources in these studies, although they have been increasingly used as a source of cells in other fields (Xue and Milano, 2020). Treatment with peripheral blood cells has also shown effectiveness (Rah et al., 2017), but whether adipose-derived stem cells can be effective for CP patients remains to be investigated. Together, the current clinical trials suggest that, regardless of the source and type of stem cells, they all show therapeutic effectiveness for CP. However, further clinical trials are needed to identify the most therapeutically effective stem cell type for CP.

An external file that holds a picture, illustration, etc. Object name is NRR-16-1377-g001.jpg

The stem cell types used in clinical trials for cerebral palsy.

The various types of stem cells injected into the human body are not only functionally different, but are also very diverse in origin. Of these, peripheral blood, umbilical cord and adipose sources are relatively abundant, while bone marrow and fetal brain sources are less. Ad: Administration; De: derived.

Routes and Methods of Cell Delivery for Cerebral Palsy Patients

Patient characteristics

The age range of enrolled patients in these studies has been large—the youngest was 1 month old (Mancías-Guerra et al., 2014) and the oldest was 32 years old (Chen et al., 2013). The proportion of older patients was very small, and 99% of cases were younger than 15 years, and mainly between 1 and 10 years of age (Additional Figure 1). In a double-blind, randomized, placebo-controlled trial, researchers found that among children aged 10 months to 10 years old, the younger patients showed greater improvement than older children (Min et al., 2013). Additional clinical trials are needed to clarify whether this trend is applicable to all patients with CP.

In addition to age, another important aspect of CP is disease classification. Based on clinical manifestations caused by the complex etiologies, CP can be classified into spastic, dyskinetic, ataxic and mixed types (Fan et al., 2015; MacLennan et al., 2015; van Lieshout et al., 2017; Korzeniewski et al., 2018). Although all types of patients have been included in different clinical trials, including quadriplegia, diplegia, athetoid, hemiplegia and hypotonic paralysis, among the many types of CP, researchers have seemingly had a preference for studying patients with spastic CP (Additional Figure 2). It has been shown that patients with different types of CP will show different treatment outcomes after receiving stem cell therapy (Sharma et al., 2015), but this still needs to be confirmed by more clinical trials. The severity of gross motor impairment and gender of the patient do not appear to be factors affecting inclusion in studies.

Administration routes

CP patients participating in stem cell clinical trials can receive stem cell transplantation in a variety of ways (Figure 2). Lumbar puncture and intravenous injection are the most common routes of administration, brain stereotactic surgery is relatively less used, while nasal administration has never been reported. A clinical trial is currently being conducted to assess the comparative effectiveness of the various administration routes (NCT03414697). Lumbar puncture administration allows drugs to reach the brain through the cerebrospinal fluid circulation, and similarly, researchers have found that stem cells can also reach the brain directly through this route (Kim et al., 2020). Although intrathecal administration is accompanied by some side effects, they can be improved by medical treatment or are spontaneously relieved (Mancías-Guerra et al., 2014; Sharma et al., 2015; Trounson and McDonald, 2015; Nguyen et al., 2017). Stereotactic brain surgery, which also allows stem cells to enter the brain directly, is much more invasive than lumbar puncture. The side effects of stereotactic surgery are relatively serious, such as lateral ventricular blood vessel injury (He et al., 2012), which may cause brain damage, thereby counteracting the therapeutic effect of stem cells. Intravenous injection is also a common route of stem cell administration, but because of the blood-brain barrier, only a small fraction of the stem cells can enter the brain parenchyma (Sherman et al., 2019). Thus, the regeneration and differentiation of exogenous stem cells in the brain is less efficient. Nonetheless, this administration method has been shown to have some therapeutic effectiveness (Mancías-Guerra et al., 2014; Zhang et al., 2015; McIntosh et al., 2016; Huang et al., 2018), which might be mediated by trophic factors secreted by the stem cells. Nasal administration has been used in clinical practice for many years, but it is a relatively novel method for stem cell therapy. Some investigators have employed this administration route in animal models (Donega et al., 2013). Preclinical studies indicate that stem cells enter the brain through the perineural space between the cribriform plate and the olfactory nerve (Danielyan et al., 2009; Galeano et al., 2018), thereby bypassing the blood-brain barrier (Lochhead and Thorne, 2012). Nasal administration can be said to be the least invasive of these administration methods, and if it also demonstrates better efficacy, it can be widely employed in the future.

An external file that holds a picture, illustration, etc. Object name is NRR-16-1377-g002.jpg

The common administration routes for cerebral palsy patients in stem cell therapy.

Patients receive stem cell therapy usually through four routes—intrathecal injection, intravenous injection, intranasal injection and intracranial injection. Intranasal injection is noninvasive, while intrathecal and intravenous injection are moderately invasive, but might induce some adverse events. Intracranial is the most invasive, and has the most side effects.

Dosage and course

Currently, there is no unified standard for the dosage and transplantation of stem cells. In six trials, stem cells were injected according to kilogram body weight, while in the remaining studies, patients were given a fixed dose of stem cells (Additional Table 3). The trials differed in dose, and furthermore, cells derived from the same source were not administered at the same dose. In children with CP, the maximum dose of stem cells was 5.7 ± 1.52 × 108 /kg of peripheral blood mononuclear cells (Rah et al., 2017), while the minimum dose was 2 × 106 of olfactory ensheathing cells (Chen et al., 2010). It has been shown that the dose of stem cells impacts therapeutic effectiveness, with higher doses having a better therapeutic effect (Sun et al., 2017). However, too many stem cells might cause side effects in patients (Gu et al., 2020). Investigators hope to achieve better treatment outcomes by optimizing administration timing as well. The time course of stem cell transplantation differs among the studies, and the number of stem cell infusions may be related to the administration route. Researchers often perform only one administration when using stereotactic brain surgery. In contrast, when transplanting by lumbar puncture or intravenous injection, the researchers are more likely to administer stem cells two to four times, with the interval varying from 3–4 days (Wang et al., 2013) to 6 months (Rah et al., 2017). Notably, a 6-year-old Chinese girl who received the most stem cell injections almost recovered completely after 16 intravenous infusions of hUCB-MSCs over the 5-year follow-up period (Zhang et al., 2015). A study showed that the efficacy of stem cell therapy decreased over time by comparing two groups with different transplantation timings (Rah et al., 2017). Perhaps the strategy of multiple injections, which allows patients to receive more stem cells, is an effective solution for ultimately curing patients with CP.

Rehabilitation program

Most patients had received rehabilitation for at least 3 months before stem cell therapy, but without obvious improvement. Rehabilitation for CP is not considered effective, and progress is slow and protracted. Although many patients seem to experience some improvements with rehabilitation, such as in muscle tone and range of motion, these changes may be hard to sustain after rehabilitation stops. Nonetheless, half of the clinical trials used a combination of stem cell therapy and rehabilitation. Most patients received a 6-month rehabilitation regimen (Chen et al., 2010, 2013; Mancías-Guerra et al., 2014; Zhang et al., 2015; McIntosh et al., 2016), and a small proportion were given a 1-year (Luan et al., 2012) or 2-year (Zhang et al., 2015; McIntosh et al., 2016; Huang et al., 2018) program, while the shortest rehabilitation program was 10 weeks (Nguyen et al., 2018). Some clinical studies implemented rehabilitation control groups to compare the therapeutic effectiveness of rehabilitation only with that of rehabilitation combined with stem cell therapy. The results show that patients who received stem cell therapy exhibited a significant improvement compared with those who only received rehabilitation. However, further study is needed to clarity whether the combination of stem cells and rehabilitation has a better therapeutic effect than stem cell therapy alone.

Typical drug

Typical drugs used for CP have limited therapeutic effect and often need repeated administration to maintain effectiveness. The benefits of stem cell therapy may be long-lasting. Because stem cell therapy is still in clinical trials for children with CP, to explore the safety and efficacy of stem cell therapy, patients will avoid using other drugs while participating in clinical trials unless it is very necessary, so as not to affect the evaluation of the results. Furthermore, some sedatives used in surgery have muscle relaxant and analgesic effects themselves, and patients who still have persistent hypotonia and decreased muscle strength on the second postoperative day have indeed been observed in our clinical trials, and we will avoid objective evaluation during this period to avoid biasing the results.

Safety and Efficacy of Stem Cell Therapy for Cerebral Palsy

Assessment tools

Evaluation of clinical trials includes safety and efficacy evaluations. The safety evaluation generally includes laboratory examination, observation of clinical symptoms and monitoring of adverse events. The assessment of efficacy is mainly divided into scale assessment and objective examination. In the published literature, the types of assessment scales vary widely, commensurate with the variability in improvement in clinical symptoms. Internationally used scales, such as the Gross Motor Function Measure-88/66 and the Gross Motor Function Classification System for gross motor (Alotaibi et al., 2014), the Manual Ability Classification Scale for fine motor and the Modified Ashworth Score for muscle tone, are used for assessment in almost every clinical trial. Clinicians will also generally implement other scales based on nation-specific conditions, such as language competence and communication, which are difficult to evaluate with a unified scale because of differences in culture and language. Furthermore, some improvements, such as in oromotor skills, salivation and psychomotor functions, are difficult to assess because of a lack of assessment scales. Researchers have accordingly tried to evaluate improvement in other ways, including brain MRI and positron emission tomography-CT. However, only a few patients showed structural changes after stem cell therapy on MRI and positron emission tomography-CT (Min et al., 2013; Rah et al., 2017), and most researchers found no imaging changes (Mancías-Guerra et al., 2014; Zali et al., 2015). Brain structural changes take time to manifest, and functional tests may be more sensitive, and the choice of MRI sequence during the evaluation may account for the observed lack of change. Some investigators used computer technology to reconstruct MRI data, and found some positive changes in brain connectivity (Sun et al., 2017). This approach may thus improve assessment. Electroencephalography (EEG) is mainly used as a safety assessment tool, but some investigators found EEG improvements that were associated with improvements in brain function (Huang et al., 2018). There are some limitations in the assessment scales, and errors are inevitable in manual assessment. Furthermore, different scales are required for different symptoms. These factors hinder the circulation and use of standardized scales among countries. MRI and EEG are internationally accepted objective detection methods that have been widely applied in clinical practice. Further innovation of evaluation methods is necessary so that different clinical trial results can be better compared.

Adverse events

In clinical trials, adverse events are of great concern and have been documented in all studies (Additional Table 3). Although some serious adverse events did occur, most were mild and could be treated with drugs or spontaneously resolved. Some adverse events appear to be related to the method of administration. The most common adverse events observed in clinical trials were fever, nausea and vomiting, and pain at the site of injection, particularly as lumbar puncture is the preferred method of cell transplantation (He et al., 2012; Wang et al., 2013; Mancías-Guerra et al., 2014; Sharma et al., 2015; Zali et al., 2015; Nguyen et al., 2017; Rah et al., 2017). The most serious adverse events included anesthesia-related adverse events, laryngeal stridor and lingual edema (Mancías-Guerra et al., 2014), and tiny hemorrhages during the stereotactic surgery (He et al., 2012; Luan et al., 2012). Seizures were found in a few patients, and among these, most had a prior history of seizures. After administration, the seizure frequency increased (Sharma et al., 2015; Zali et al., 2015). Researchers conjectured that the seizures were related to stem cell therapy. However, interestingly, in two clinical trials, patients who had refractory epilepsy or drug-resistant epilepsy exhibited a reduction in seizure frequency after stem cell intervention (DaCosta et al., 2018; Milczarek et al., 2018). Whether stem cells have a therapeutic effect on epilepsy or aggravate the condition is still debatable, and in the future, we need to carry out more relevant clinical studies. Some mood changes like crying (Chen et al., 2013), difficulty in falling asleep (Luan et al., 2012) and irritability (Chen et al., 2013; Rah et al., 2017) were also thought to be associated with stem cell therapy. Overall, stem cell therapy is relatively safe, and nasal administration may be a good choice to limit adverse events related to the route of administration.

Efficacy

Gross motor function

All stem cell therapies have produced improvements in gross motor function, but the improvements have varied. The assessment of gross motor functional improvement mainly includes lying and rolling, sitting, crawling and kneeling, standing, walking, and running and jumping. Stem cells from all sources can be therapeutic for CP patients. The study by Nguyen et al. (2017) showed that 6 months after autologous BMMNCs transplantation, patients showed significant improvements in lying, rolling and sitting, with a proportion of 100%, as well as improvements in walking, running and jumping, with a proportion of 38%. Similar outcomes were observed in other clinical trials using stem cells derived from bone marrow (Chen et al., 2013; Mancías-Guerra et al., 2014; Zali et al., 2015). hUCB/UC, a common source of stem cells, also has an ameliorative effect on gross motor function in CP patients. In a study of allogeneic hUCB-MSC administration, CP children showed great changes in gross motor ability over the 2-year follow-up (Huang et al., 2018). Fetal brain-derived stem cells, including neural progenitor cells (Luan et al., 2012) and olfactory ensheathing cells (Chen et al., 2010), have also been shown to improve gross motor function.

Peripheral blood, an abundant source of stem cells, has been increasingly used in recent years, but rarely in patients with CP. A study by Rah et al. (2017) showed that after peripheral blood mononuclear cell transplantation, 42.6% of the 57 CP patients showed overall improvements in gross motor function, although no changes were observed in gross motor function staging. Although a meta-analysis suggests that MSCs may be the best stem cells for improving gross motor functions (Eggenberger et al., 2019), randomized controlled trials are needed for confirmation.

Fine motor function

In contrast to the significant gross motor function improvements, fine motor changes are not as widespread. Although stem cells from all sources have improved fine motor function, this effect is not observed in all clinical trials. Only a few clinical trials reported fine motor improvements. For example, neural progenitor cells derived from fetal brain can improve hand movement, pinching tiny objects and eye-hand coordination (Luan et al., 2012), and about 10 diplegic CP patients showed better distal hand movements after autologous BMMNC transplantation (Sharma et al., 2015), and a boy’s hand function rating improved from level 3 to 2 in the Manual Ability Classification Scale after receiving human UC-MSC transplantation (Okur et al., 2018). Furthermore, after peripheral blood mononuclear cell transplantation, 42.6% of patients showed improvements in fine motor function (Rah et al., 2017). Fine motor movements are very complex functions, and improvement requires the coordination of various muscles and nerves, including the adjustment of muscle tension. This may make the improvement of fine motor skills more difficult and prolonged.

Muscle tone

Muscle tension is a common problem for many CP patients. The disorders of muscle tension cause the patient to be unable to complete many movements. A decrease in muscle tone has been reported in some clinical trials. Nguyen et al. (2017) observed a decline in the Modified Ashworth score from 3.4 to 2.0, and another study reported a reduction in muscle spasticity from 3.8 to 2.1 after transplantation (Nguyen et al., 2018). Almost all CP patients display muscle tone changes in clinical trials of stem cell therapy (Sharma et al., 2015). However, changes in muscle tone have not been reported in therapy of stem cells derived from hUCB/UC or peripheral blood; however, there is only one report of the latter. Nonetheless, bone marrow and fetal brain-derived stem cells may have some advantages over hUCB/UC-derived stem cells in improving muscle tension.

Cognition

Improvements in cognition with stem cell therapy have been reported in multiple clinical trials. Some studies reported that bone marrow stem cell transplantation results in cognitive improvement (Mancías-Guerra et al., 2014; Sharma et al., 2015; Zali et al., 2015), whereas others did not (Chen et al., 2013; Wang et al., 2013; Nguyen et al., 2017). A similar phenomenon is found with hUCB/UC-derived stem cell therapy (McIntosh et al., 2016; Huang et al., 2018; Okur et al., 2018). Although there are few studies of stem cells derived from fetal brain, significant cognitive increases have been reported (Luan et al., 2012). Perhaps because of the less frequent use of peripheral blood stem cells, no reports of improvement in cognitive function have been reported.

Others

In addition to the above symptoms, many other improvements have been reported in clinical trials. Language competence enhancement is a common finding after stem cell transplantation (He et al., 2012; Mancías-Guerra et al., 2014; Sharma et al., 2015; Huang et al., 2018). Other improvements, such as in self-dependence and social adaptability (He et al., 2012; Mancías-Guerra et al., 2014; Zhang et al., 2015; McIntosh et al., 2016; Huang et al., 2018), visual acuity (He et al., 2012; Sharma et al., 2015), salivation (Wang et al., 2013), and emotional and physical health (Chen et al., 2010; Nguyen et al., 2018) have also been observed in some clinical trials. Some of these changes were assessed with a scale, while others could not. This makes it impossible to carry out significance analysis of these changes. The improvements produced by stem cells are manifold, and there remain challenges in assessment.

Mechanisms Underlying the Effectiveness of Stem Cell Therapy for Cerebral Palsy

It is well-known that stem cells have the ability to differentiate, and under appropriate conditions, become any type of cell in the human body. Stem cells also have the ability to proliferate indefinitely (Jin, 2017). Stem cells have been applied in the clinical study of a variety of neurological diseases (Duncan and Valenzuela, 2017; Burman et al., 2018), and have shown good therapeutic effectiveness and safety for many diseases that cannot be resolved by drugs. Preclinical studies indicate that stem cells also have immunomodulatory actions (Naji et al., 2019) and can secrete cytokines (Huang and Zhang, 2019). Thus, the mechanisms of the therapeutic effectiveness of stem cell therapy for CP likely involves the following: After entering, stem cells can differentiate into neurons and glial cells, such as astrocytes, and replace damaged cells, and then re-establish connections with other neural cells. Stem cells secrete a variety of cytokines that modulate the inflammatory response, and ensure the survival of neurons and promote angiogenesis. In addition, exogenous stem cells can also induce and accelerate endogenous repair (Huang and Zhang, 2019).

Challenges in the Future Application of Stem Cell Therapy for Cerebral Palsy

With the increase in the number of clinical studies, stem cells are expected to be marketed successively in the near future, bringing new options for the treatment of CP. However, many problems remain to be tackled. The follow-up observation period of current clinical trials is generally short, and the long-term safety and efficacy of stem cell therapy remain to be adequately assessed. It is clear that all types of stem cells have a therapeutic effect in CP. However, because the doses, sources and administration routes differ among the clinical trials, it is currently difficult to declare the best candidate for CP patients. Clinical trials of CP have to date been mainly carried out on younger children, but with the advancement of medical care, many children with CP survive, and it remains unknown whether stem cell therapy can also improve symptoms in older patients. Additionally, it is necessary to identify the optimal administration method to maximize efficacy and minimize side effects, although nasal administration shows promise. Further improvements are needed in efficacy assessment methods. Although scale assessment has been used for many years, the limitations in symptom assessment cannot be ignored. Currently, most scale assessments can only assess the improvement of a certain aspect of clinical symptoms. Furthermore, the scales are prone to human error. New assessment methods, such as positron emission tomography/CT and MRI, have been employed and have shown to be effective in some clinical trials (Eggenberger et al., 2019). However, the radiation exposure from positron emission tomography/CT cannot be ignored. The application of computer analysis of EEG data in other fields (Beaty et al., 2016; Avena-Koenigsberger et al., 2017) may also be applicable to the evaluation of CP. MRI and EEG, as objective examination methods, are sensitive to the changes in brain structure and function. The combination of MRI and EEG using computer data processing techniques may enhance the evaluation of CP.

 

Additional files:

Additional Table 1Completed and recruiting clinical trials of stem cells therapy for CP.

Additional Table 2Other clinical trials of stem cells therapy for CP.

Additional Table 3Published clinical trials of stem cell therapy for CP.

Additional Figure 1The type of CP patients enrolled in clinical trials.

Additional Figure 1

The type of CP patients enrolled in clinical trials.

Additional Figure 2The administration routes of stem cell therapy for CP.

Additional Figure 2

The administration routes of stem cell therapy for CP.

Footnotes

C-Editor: Zhao M; S-Editors: Yu J, Li CH; L-Editors: Patel B, Yu J, Song LP; T-Editor: Jia Y

 

Conflicts of interest: The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 

Financial support: This work was supported by the National Natural Science Foundation of China, No. 81471308 (to JL), the Stem Cell Clinical Research Project of China, No. CMR-20161129-1003 (to JL), and the Dalian Innovation Technology Funding of China, No. 2018J11CY025 (to JL).

 

Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

 

Plagiarism check: Checked twice by iThenticate.

 

Peer review: Externally peer reviewed.

 

Funding: This work was supported by the National Natural Science Foundation of China, No. 81471308 (to JL), the Stem Cell Clinical Research Project of China, No. CMR-20161129-1003 (to JL), and the Dalian Innovation Technology Funding of China, No. 2018J11CY025 (to JL).

 

References

1. Alotaibi M, Long T, Kennedy E, Bavishi S. The efficacy of GMFM-88 and GMFM-66 to detect changes in gross motor function in children with cerebral palsy (CP): a literature review. Disabil Rehabil. 2014;36:617–627. [PubMed[]
2. Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20:637–647. [PubMed[]
3. Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat Rev Neurosci. 2017;19:17–33. [PubMed[]
4. Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA. 2006;296:1602–1608. [PubMed[]
5. Beaty RE, Benedek M, Silvia PJ, Schacter DL. Creative cognition and brain network dynamics. Trends Cogn Sci. 2016;20:87–95. [PMC free article] [PubMed[]
6. Bennet L, Tan S, Van den Heuij L, Derrick M, Groenendaal F, van Bel F, Juul S, Back SA, Northington F, Robertson NJ, Mallard C, Gunn AJ. Cell therapy for neonatal hypoxia-ischemia and cerebral palsy. Ann Neurol. 2012;71:589–600. [PubMed[]
7. Bernstock JD, Peruzzotti-Jametti L, Ye D, Gessler FA, Maric D, Vicario N, Lee YJ, Pluchino S, Hallenbeck JM. Neural stem cell transplantation in ischemic stroke: A role for preconditioning and cellular engineering. J Cereb Blood Flow Metab. 2017;37:2314–2319. [PMC free article] [PubMed[]
8. Brandenburg JE, Fogarty MJ, Sieck GC. A critical evaluation of current concepts in cerebral palsy. Physiology (Bethesda) 2019;34:216–229. [PMC free article] [PubMed[]
9. Burman J, Tolf A, Hägglund H, Askmark H. Autologous haematopoietic stem cell transplantation for neurological diseases. J Neurol Neurosurg Psychiatry. 2018;89:147–155. [PMC free article] [PubMed[]
10. Carroll JE, Mays RW. Update on stem cell therapy for cerebral palsy. Expert Opin Biol Ther. 2011;11:463–471. [PMC free article] [PubMed[]
11. Chen G, Wang Y, Xu Z, Fang F, Xu R, Wang Y, Hu X, Fan L, Liu H. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11:21. [PMC free article] [PubMed[]
12. Chen L, Huang H, Xi H, Xie Z, Liu R, Jiang Z, Zhang F, Liu Y, Chen D, Wang Q, Wang H, Ren Y, Zhou C. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant. 2010;19:185–191. [PubMed[]
13. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke. 2010;41:516–523. [PMC free article] [PubMed[]
14. DaCosta JC, Portuguez MW, Marinowic DR, Schilling LP, Torres CM, DaCosta DI, Carrion MJM, Raupp EF, Machado DC, Soder RB, Lardi SL, Garicochea B. Safety and seizure control in patients with mesial temporal lobe epilepsy treated with regional superselective intra-arterial injection of autologous bone marrow mononuclear cells. J Tissue Eng Regen Med. 2018;12:e648–656. [PubMed[]
15. Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, Burkhardt U, Proksch B, Verleysdonk S, Ayturan M, Buniatian GH, Gleiter CH, Frey WH., 2nd Intranasal delivery of cells to the brain. Eur J Cell Biol. 2009;88:315–324. [PubMed[]
16. Donega V, van Velthoven CT, Nijboer CH, van Bel F, Kas MJ, Kavelaars A, Heijnen CJ. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS One. 2013;8:e51253. [PMC free article] [PubMed[]
17. Dong H, Li G, Shang C, Yin H, Luo Y, Meng H, Li X, Wang Y, Lin L, Zhao M. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy. Am J Transl Res. 2018;10:901–906. [PMC free article] [PubMed[]
18. Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017;8:111. [PMC free article] [PubMed[]
19. Eggenberger S, Boucard C, Schoeberlein A, Guzman R, Limacher A, Surbek D, Mueller M. Stem cell treatment and cerebral palsy: Systemic review and meta-analysis. World J Stem Cells. 2019;11:891–903. [PMC free article] [PubMed[]
20. Fan HC, Ho LI, Chi CS, Cheng SN, Juan CJ, Chiang KL, Lin SZ, Harn HJ. Current proceedings of cerebral palsy. Cell Transplant. 2015;24:471–485. [PubMed[]
21. Forraz N, McGuckin CP. The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 44 Suppl. 2011;1:60–69. [PMC free article] [PubMed[]
22. Galeano C, Qiu Z, Mishra A, Farnsworth SL, Hemmi JJ, Moreira A, Edenhoffer P, Hornsby PJ. The route by which intranasally delivered stem cells enter the central nervous system. Cell Transplant. 2018;27:501–514. [PMC free article] [PubMed[]
23. Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, Becher JG, Gaebler-Spira D, Colver A, Reddihough DS, Crompton KE, Lieber RL. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. [PMC free article] [PubMed[]
24. Gu J, Huang L, Zhang C, Wang Y, Zhang R, Tu Z, Wang H, Zhou X, Xiao Z, Liu Z, Hu X, Ke Z, Wang D, Liu L. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Res Ther. 2020;11:43. [PMC free article] [PubMed[]
25. Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q. Development of stem cell-based therapy for Parkinson’s disease. Transl Neurodegener. 2015;4:16. [PMC free article] [PubMed[]
26. He S, Luan Z, Qu S, Qiu X, Xin D, Jia W, Shen Y, Yu Z, Xu T. Ultrasound guided neural stem cell transplantation through the lateral ventricle for treatment of cerebral palsy in children. Neural Regen Res. 2012;7:2529–2535. [PMC free article] [PubMed[]Retracted
27. Huang L, Zhang L. Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol. 2019;173:1–17. [PMC free article] [PubMed[]
28. Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, Lu H. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant. 2018;27:325–334. [PMC free article] [PubMed[]
29. Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res. 2018;83:345–355. [PubMed[]
30. Jiao Y, Li XY, Liu J. A new approach to cerebral palsy treatment: discussion of the effective components of umbilical cord blood and its mechanisms of action. Cell Transplant. 2019;28:497–509. [PMC free article] [PubMed[]
31. Jin J. Stem Cell Treatments. JAMA. 2017;317:330. [PubMed[]
32. Jindal P, Macdermid JC, Rosenbaum P, Direzze B, Narayan A, Nayak SL. Treatment and re/habilitation of children with cerebral palsy in India: a scoping review. Dev Med Child Neurol. 2019;61:1050–1060. [PubMed[]
33. Kiasatdolatabadi A, Lotfibakhshaiesh N, Yazdankhah M, Ebrahimi-Barough S, Jafarabadi M, Ai A, Sadroddiny E, Ai J. The role of stem cells in the treatment of cerebral palsy: a review. Mol Neurobiol. 2017;54:4963–4972. [PubMed[]
34. Kim H, Na DL, Lee NK, Kim AR, Lee S, Jang H. Intrathecal injection in a rat model: a potential route to deliver human Wharton’s jelly-derived mesenchymal stem cells into the brain. Int J Mol Sci. 2020;21:1272. [PMC free article] [PubMed[]
35. Koman LA, Smith BP, Shilt JS. Cerebral palsy. Lancet. 2004;363:1619–1631. [PubMed[]
36. Korzeniewski SJ, Slaughter J, Lenski M, Haak P, Paneth N. The complex aetiology of cerebral palsy. Nat Rev Neurol. 2018;14:528–543. [PubMed[]
37. Liao LY, Lau BW, Sánchez-Vidaña DI, Gao Q. Exogenous neural stem cell transplantation for cerebral ischemia. Neural Regen Res. 2019;14:1129–1137. [PMC free article] [PubMed[]
38. Liu X, Fu X, Dai G, Wang X, Zhang Z, Cheng H, Zheng P, An Y. Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. J Transl Med. 2017;15:48. [PMC free article] [PubMed[]
39. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–628. [PubMed[]
40. Luan Z, Liu W, Qu S, Du K, He S, Wang Z, Yang Y, Wang C, Gong X. Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplant. 2012;21(Suppl 1):S91–98. [PubMed[]
41. MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol. 2015;213:779–788. [PubMed[]
42. Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O, Villarreal-Martínez L, Jaime-Pérez JC, García-Rodríguez F, Valdés-Burnes SL, Rodríguez-Romo LN, Barrera-Morales DC, Sánchez-Hernández JJ, Cantú-Rodríguez OG, Gutiérrez-Aguirre CH, Gómez-De León A, Elizondo-Riojas G, Salazar-Riojas R, Gómez-Almaguer D. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy. 2014;16:810–820. [PubMed[]
43. Mazzini L, Vescovi A, Cantello R, Gelati M, Vercelli A. Stem cells therapy for ALS. Expert Opin Biol Ther. 2016;16:187–199. [PubMed[]
44. McIntosh CC, Crino RD, O’Neill K. Treating problem gambling samples with cognitive behavioural therapy and mindfulness-based interventions: a clinical trial. J Gambl Stud. 2016;32:1305–1325. [PubMed[]
45. Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, Majka M. Multiple autologous bone marrow-derived CD271(+) mesenchymal stem cell transplantation overcomes drug-resistant epilepsy in children. Stem Cells Transl Med. 2018;7:20–33. [PMC free article] [PubMed[]
46. Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, Jang SJ, Kim SH, Oh D, Kim MK, Kim SS, Kim M. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31:581–591. [PMC free article] [PubMed[]
47. Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res. 2019;14:227–237. [PMC free article] [PubMed[]
48. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76:3323–3348. [PubMed[]
49. Nguyen LT, Nguyen AT, Vu CD, Ngo DV, Bui AV. Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial. BMC Pediatr. 2017;17:104. [PMC free article] [PubMed[]
50. Nguyen TL, Nguyen HP, Nguyen TK. The effects of bone marrow mononuclear cell transplantation on the quality of life of children with cerebral palsy. Health Qual Life Outcomes. 2018;16:164. [PMC free article] [PubMed[]
51. Novak I, Walker K, Hunt RW, Wallace EM, Fahey M, Badawi N. Concise review: stem cell interventions for people with cerebral palsy: systematic review with meta-analysis. Stem Cells Transl Med. 2016;5:1014–1025. [PMC free article] [PubMed[]
52. Okur SÇ, Erdoğan S, Demir CS, Günel G, Karaöz E. The effect of umbilical cord-derived mesenchymal stem cell transplantation in a patient with cerebral palsy: a case report. Int J Stem Cells. 2018;11:141–147. [PMC free article] [PubMed[]
53. Rah WJ, Lee YH, Moon JH, Jun HJ, Kang HR, Koh H, Eom HJ, Lee JY, Lee YJ, Kim JY, Choi YY, Park K, Kim MJ, Kim SH. Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study. J Transl Med. 2017;15:16. [PMC free article] [PubMed[]
54. Reid LB, Rose SE, Boyd RN. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat Rev Neurol. 2015;11:390–400. [PubMed[]
55. Reza-Zaldivar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Sandoval-ávila S, Gomez-Pinedo U, Márquez-Aguirre AL, Vázquez-Méndez E, Padilla-Camberos E, Canales-Aguirre AA. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen Res. 2019;14:1626–1634. [PMC free article] [PubMed[]
56. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14. [PubMed[]
57. Ruff CA, Faulkner SD, Fehlings MG. The potential for stem cell therapies to have an impact on cerebral palsy: opportunities and limitations. Dev Med Child Neurol. 2013;55:689–697. [PubMed[]
58. Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J, Paranjape A, Shetty A, Bhagwanani K, Biju H, Badhe P. A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int. 2015;2015:905874. [PMC free article] [PubMed[]
59. Sherman LS, Romagano MP, Williams SF, Rameshwar P. Mesenchymal stem cell therapies in brain disease. Semin Cell Dev Biol. 2019;95:111–119. [PubMed[]
60. Sun JM, Song AW, Case LE, Mikati MA, Gustafson KE, Simmons R, Goldstein R, Petry J, McLaughlin C, Waters-Pick B, Chen LW, Wease S, Blackwell B, Worley G, Troy J, Kurtzberg J. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: a randomized, placebo-controlled trial. Stem Cells Transl Med. 2017;6:2071–2078. [PMC free article] [PubMed[]
61. Thanh LN, Trung KN, Duy CV, Van DN, Hoang PN, Phuong ANT, Ngo MD, Thi TN, Viet AB. Improvement in gross motor function and muscle tone in children with cerebral palsy related to neonatal icterus: an open-label, uncontrolled clinical trial. BMC Pediatr. 2019;19:290. [PMC free article] [PubMed[]
62. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22. [PubMed[]
63. van Lieshout P, Candundo H, Martino R, Shin S, Barakat-Haddad C. Onset factors in cerebral palsy: A systematic review. Neurotoxicology. 2017;61:47–53. [PubMed[]
64. Van Naarden Braun K, Doernberg N, Schieve L, Christensen D, Goodman A, Yeargin-Allsopp M. Birth prevalence of cerebral palsy: A population-based study. Pediatrics. 2016;137:1–9. [PMC free article] [PubMed[]
65. Wang X, Cheng H, Hua R, Yang J, Dai G, Zhang Z, Wang R, Qin C, An Y. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy. 2013;15:1549–1562. [PubMed[]
66. Xue E, Milano F. Are we underutilizing bone marrow and cord blood. Review of their role and potential in the era of cellular therapies? F1000Res. 2020:26. [PMC free article] [PubMed[]
67. Zali A, Arab L, Ashrafi F, Mardpour S, Niknejhadi M, Hedayati-Asl AA, Halimi-Asl A, Ommi D, Hosseini SE, Baharvand H, Aghdami N. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety. Cytotherapy. 2015;17:232–241. [PubMed[]
68. Zhang C, Huang L, Gu J, Zhou X. Therapy for cerebral palsy by human umbilical cord blood mesenchymal stem cells transplantation combined with basic rehabilitation treatment: a case report. Glob Pediatr Health. 2015;2:2333794×15574091. [PMC free article] [PubMed[]
69. Zheng XR, Zhang SS, Yin F, Tang JL, Yang YJ, Wang X, Zhong L. Neuroprotection of VEGF-expression neural stem cells in neonatal cerebral palsy rats. Behav Brain Res. 2012;230:108–115. [PubMed[]

Source

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284300/

Facebook
Pinterest
Twitter
LinkedIn